首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32204篇
  免费   2076篇
  国内免费   2008篇
化学   17236篇
晶体学   163篇
力学   554篇
综合类   609篇
数学   6491篇
物理学   11235篇
  2023年   224篇
  2022年   377篇
  2021年   1169篇
  2020年   644篇
  2019年   775篇
  2018年   531篇
  2017年   626篇
  2016年   809篇
  2015年   862篇
  2014年   1141篇
  2013年   1983篇
  2012年   1271篇
  2011年   1668篇
  2010年   1517篇
  2009年   2020篇
  2008年   2071篇
  2007年   2313篇
  2006年   1758篇
  2005年   1057篇
  2004年   1006篇
  2003年   985篇
  2002年   975篇
  2001年   986篇
  2000年   693篇
  1999年   532篇
  1998年   573篇
  1997年   389篇
  1996年   457篇
  1995年   427篇
  1994年   435篇
  1993年   472篇
  1992年   465篇
  1991年   318篇
  1990年   259篇
  1989年   207篇
  1988年   243篇
  1987年   203篇
  1986年   210篇
  1985年   314篇
  1984年   228篇
  1983年   141篇
  1982年   285篇
  1981年   465篇
  1980年   427篇
  1979年   463篇
  1978年   368篇
  1977年   279篇
  1976年   238篇
  1974年   76篇
  1973年   160篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
91.
92.
Due to their structural merits that arise from their stability and high surface area, the layered double hydroxide (LDH) materials have caused strong attention. These characteristics provided intriguing possibilities with improved efficiency for catalytic applications. In this work, the preparation of 1-butyl-3-methylimidazolium hydroxide ([BMIM]+OH) intercalated by a facile approach in a layered double hydroxide (LDH) matrix is reported and its implementation as a greener catalyst is shown. Different physico-chemical techniques such as XRD, FTIR, TGA, and N2-physisorption, HRTEM, and CO2 adsorption are implemented to characterize the structure of the fabricated catalysts. The [BMIM]+OH/LDH exhibit outstanding catalytic performance in Knoevenagel condensation, resulting from the high LDH surface area and synergistic effects between both the intercalated ionic liquid and LDHs matrix. Knoevenagel’s fabricated catalysts can be exploited to catalyze different condensations and can be reused well. This work therefore generates good opportunities in the field of catalysis for the preparing and implementation of LDH-based catalysts.  相似文献   
93.
《中国化学快报》2020,31(12):3163-3167
The rapid identification of pathogens is crucial in controlling the food quality and safety. The proposed system for the rapid and label-free identification of pathogens is based on the principle of laser scattering from the bacterial microbes. The clinical prototype consists of three parts: the laser beam, photodetectors, and the data acquisition system. The bacterial testing sample was mixed with 10 mL distilled water and placed inside the machine chamber. When the bacterial microbes pass by the laser beam, the scattering of light occurs due to variation in size, shape, and morphology. Due to this reason, different types of pathogens show their unique light scattering patterns. The photo-detectors were arranged at the surroundings of the sample at different angles to collect the scattered light. The photodetectors convert the scattered light intensity into a voltage waveform. The waveform features were acquired by using the power spectral characteristics, and the dimensionality of extracted features was reduced by applying minimal-redundancy-maximal-relevance criterion (mRMR). A support vector machine (SVM) classifier was developed by training the selected power spectral features for the classification of three different bacterial microbes. The resulting average identification accuracies of E. faecalis, E. coli and S. aureus were 99%, 87%, and 94%, respectively. The overall experimental results yield a higher accuracy of 93.6%, indicating that the proposed device has the potential for label-free identification of pathogens with simplicity, rapidity, and cost-effectiveness.  相似文献   
94.
Pauling described metallic bonds using resonance. The maximum probability domains in the Kronig–Penney model can show a picture of it. When the walls are opaque (and the band gap is large) the maximum probability domain for an electron pair essentially corresponds to the region between the walls: the electron pairs are localized within two consecutive walls. However, when the walls become transparent (and the band gaps closes), the maximum probability domain can be moved through the system without a significant loss in probability.  相似文献   
95.
Bifurcated halogen bonds are constructed with FBr and FI as Lewis acids, paired with NH3 and NCH bases. The first type considered places two bases together with a single acid, while the reverse case of two acids sharing a single base constitutes the second type. These bifurcated systems are compared with the analogous H-bonds wherein FH serves as the acid. In most cases, a bifurcated system is energetically inferior to a single linear bond. There is a larger energetic cost to forcing the single σ-hole of an acid to interact with a pair of bases, than the other way around where two acids engage with the lone pair of a single base. In comparison to FBr and FI, the H-bonding FH acid is better able to participate in a bifurcated sharing with two bases. This behavior is traced to the properties of the monomers, in particular the specific shape of the molecular electrostatic potential, the anisotropy of the orbitals of the acid and base that interact directly with one another, and the angular extent of the total electron density of the two molecules.  相似文献   
96.
Millions of people around the world suffer from psychiatric illnesses, causing unbearable burden and immense distress to patients and their families. Accumulating evidence suggests that inflammation may contribute to the pathophysiology of psychiatric disorders such as major depression and bipolar disorder. Copious studies have consistently shown that patients with mood disorders have increased levels of plasma tumor necrosis factor (TNF)-α. Given these findings, selective anti-TNF-α compounds were tested as a potential therapeutic strategy for mood disorders. This mini-review summarizes the results of studies that examined the mood-modulating effects of anti-TNF-α drugs.  相似文献   
97.
This paper is our attempt, on the basis of physical theory, to bring more clarification on the question “What is life?” formulated in the well-known book of Schrödinger in 1944. According to Schrödinger, the main distinguishing feature of a biosystem’s functioning is the ability to preserve its order structure or, in mathematical terms, to prevent increasing of entropy. However, Schrödinger’s analysis shows that the classical theory is not able to adequately describe the order-stability in a biosystem. Schrödinger also appealed to the ambiguous notion of negative entropy. We apply quantum theory. As is well-known, behaviour of the quantum von Neumann entropy crucially differs from behaviour of classical entropy. We consider a complex biosystem S composed of many subsystems, say proteins, cells, or neural networks in the brain, that is, S=(Si). We study the following problem: whether the compound system S can maintain “global order” in the situation of an increase of local disorder and if S can preserve the low entropy while other Si increase their entropies (may be essentially). We show that the entropy of a system as a whole can be constant, while the entropies of its parts rising. For classical systems, this is impossible, because the entropy of S cannot be less than the entropy of its subsystem Si. And if a subsystems’s entropy increases, then a system’s entropy should also increase, by at least the same amount. However, within the quantum information theory, the answer is positive. The significant role is played by the entanglement of a subsystems’ states. In the absence of entanglement, the increasing of local disorder implies an increasing disorder in the compound system S (as in the classical regime). In this note, we proceed within a quantum-like approach to mathematical modeling of information processing by biosystems—respecting the quantum laws need not be based on genuine quantum physical processes in biosystems. Recently, such modeling found numerous applications in molecular biology, genetics, evolution theory, cognition, psychology and decision making. The quantum-like model of order stability can be applied not only in biology, but also in social science and artificial intelligence.  相似文献   
98.
We calculate the possible interaction between a superconductor and the static Earth’s gravitational fields, making use of the gravito-Maxwell formalism combined with the time-dependent Ginzburg–Landau theory. We try to estimate which are the most favorable conditions to enhance the effect, optimizing the superconductor parameters characterizing the chosen sample. We also give a qualitative comparison of the behavior of high–Tc and classical low–Tc superconductors with respect to the gravity/superfluid interplay.  相似文献   
99.
Modification of the recently reported 19F-detected 1,1-ADEQUATE experiment that incorporates dual-optimization to selectively invert a wide range of 1JCC correlations in a 1,n-ADEQUATE experiment is reported. Parameters for the dual-optimization segment of the pulse sequence were modified to accommodate the increased size of 1JCC homonuclear coupling constants of poly- and perfluorinated molecules relative to protonated molecules to allow broadband inversion of the 1JCC correlations. The observation and utility of isotope shifts are reported for the first time for 1,1- and 1,n-ADEQUATE correlations.  相似文献   
100.
Shuo-Qing Liu 《中国物理 B》2022,31(7):74101-074101
We establish the beam models of Goos-Hänchen (GH) and Imbert-Fedorov (IF) effects in tilted Weyl semimetals (WSMs), and systematically study the influences of Weyl cone tilting and chemical potential on the GH and IF shifts at a certain photon energy 1.96 eV. It is found that the GH and IF shifts in tilted type-I and type-Ⅱ WSMs are both almost symmetric about the Weyl cone tilting. Meanwhile, the GH and IF shifts in type-I WSMs almost do not change with the tilt degree of Weyl cones, while those in type-Ⅱ WSMs are extremely dependent on tilt degree. These trends are mainly due to the nearly symmetric distribution of WSMs conductivities, where the conductivities keep stable in type-I WSMs and gradually decrease with tilt degree in type-Ⅱ WSMs. By adjusting the chemical potential, the boundary between type-I and type-Ⅱ WSMs widens, and the dependence of the beam shifts on the tilt degree can be manipulated. Furthermore, by extending the relevant discussions to a wider frequency band, the peak fluctuation of GH shifts and the decrease of IF shifts occur gradually as the frequency increases, and the performance of beam shifts at photon energy 1.96 eV is equally suitable for other photon frequencies. The above findings provide a new reference for revisiting the beam shifts in tilted WSMs and determining the types of WSMs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号